

Manual

Funcionamiento y configuración

Solución **Industrial IoT** para máquinas Industriales

CONTENIDO

(OBO)

Tabla de contenido

1.	Introducción	3
1.1.	¿Qué es el Innobox?	3
1.2.	¿Como funciona?	4
1.3.	Datos necesarios	4
1.3.1.	Variables de producción	4
1.3.2.	Alarmas de la máquina	5
1.3.3.	Variables de mantenimiento	5
1.3.4.	Variables para monitorizar (libre)	5
1.3.5.	Definiciones de funcionamiento	5
1.3.5.1.	Recetas de producción	6
1.3.5.2.	Turnos de trabajo	6
1.3.5.3.	Descripciones de las alarmas	6
1.3.5.4.	Tareas de mantenimiento	7
2.	Instalación y activación del dispositivo a la red	7
3.	Configuración inicial	9
3.1	Siemens para ethernet (S7 o superior)	10
3.2	Modbus genérico	12
4.	Conclusión	13

Manual de configuración y funcionamiento

Página 2 de 14

1. Introducción

El objetivo de este manual es explicar el propósito del dispositivo, así como servir de guía durante la instalación y configuración inicial.

1.1. ¿Qué es el Innobox?

Se trata de un dispositivo "Plug&Play", fácilmente configurable, que sirve para obtener los KPIs (Key Performance Indicators) que nos indican la calidad de trabajo de la máquina, el uso que se le da, la eficiencia de la producción y formatos aplicados, los errores más habituales, ...

Hay cuatro KPIs clave:

a. **OEE** – Overall Equipment Effectiveness. Nos indica el porcentaje de correcto funcionamiento y uso de la máquina, calculada a partir de 3 variables:

1. **Disponibilidad** – Tiempo real en modo de trabajo productivo del tiempo total de funcionamiento de la máquina.

2. **Eficiencia** – Comparativa entre la producción teórica esperada por la receta especificada y la producción real.

3. **Calidad** – Tanto por ciento de producción buena respecto la producción total realizada.

b. **MTBF** – Mean Time Between Failures. Tiempo medio transcurrido entre paradas de máquina.

c. MTTR – Mean Time To Repair. Tiempo medio para resolver paradas de máquina.

d. **MTFF** – Mean Time First Failure. Tiempo medio desde que se inicia la producción hasta que se para por primera vez.

Para los casos en los que el dispositivo se utiliza para monitorizar una máquina concreta dentro de una línea de producción, el dispositivo diferencia entre el OEE de la máquina y el OEE global de la línea, diferenciando entre los casos en que la línea está parada debido a la máquina en cuestión o no.

Además, el dispositivo utiliza los datos generados por el PLC para generar estadísticas del funcionamiento general de la máquina, así como ofrecer las funcionalidades de datalogger (creando archivos CSV con los valores deseados a medida del cliente), predictivo de producción (con datos reales de producciones anteriores) o mantenimiento preventivo (pudiendo controlar cuándo es necesario realizar alguna tarea de mantenimiento sobre elementos mecánicos de la máquina antes de que se genere un problema real).

1.2. ¿Como funciona?

Para obtener estos datos calculados, el dispositivo se ha de conectar a la misma red donde se encuentre el PLC que controle la máquina que se dedica monitorizar y pasarle las variables específicas necesarias.

Una vez que todo está vinculado, el dispositivo se queda escuchando estos datos, registrando los cambios en diferentes tablas históricas de la base de datos interna, que explotan las diferentes pantallas de monitorización. Estas pantallas nos sirven para saber el estado actual de la máquina, ver un análisis de la producción o de las alarmas generadas, comparativas de turnos de trabajo y otras funcionalidades, explicadas en su manual específico.

1.3. Datos necesarios

Para funcionar correctamente, el Innobox requiere de la siguiente información:

1.3.1. Variables de producción

Estas son las variables que permiten al dispositivo saber el estado de la máquina, la producción que está realizando y proveen la información necesaria para los cálculos de los KPIs.

- Variables de estado, booleanos que indiquen cuando la máquina está trabajando, en pausa, instalando un nuevo formato o receta, a la espera de materia entrante, con la salida bloqueada o en parada planificada.

- Información sobre la receta o formato, como su código único, el nombre descriptivo, la producción teórica esperada y las piezas pedidas.

- Contadores de la producción, siendo esenciales los de piezas correctas y piezas rechazadas, pero dejando a disposición del usuario seis contadores extra para poder visualizar los datos que interesen.

1.3.2. Alarmas de la máquina

Alarmas generadas por el PLC que se quieran mantener en historial, pudiendo leer tantas variables booleanas, enteras y dobles enteras como se tengan definidas en la máquina. El valor recibido será el que se comparará con las definiciones indicadas posteriormente para mostrar la descripción correspondiente.

1.3.3. Variables de mantenimiento

Variables booleanas que indiquen que un elemento mecánico está trabajando. Se puede analizar por tiempo activado, como podría ser un bit que indique que un motor o una cinta están trabajando, o por ciclos de funcionamiento, como el bit que hace salir o entrar un pistón. En las definiciones posteriores se indicará el tiempo de vida de cada elemento y la tarea específica a realizar.

1.3.4. Variables para monitorizar (libre)

La funcionalidad de datalogger está a completa disposición del cliente y se pueden definir el tipo de variable que se quiera (con alguna limitación dependiendo del protocolo de comunicación, indicada en su apartado). Estas variables quedarán enlazadas y a la espera de ser escuchadas a petición del usuario desde su pantalla correspondiente.

1.3.5. Definiciones de funcionamiento

Para que la información mostrada sea íntegra, es necesario informar al dispositivo de ciertas descripciones y métodos. En el apartado correspondiente del configurador, el usuario encontrará plantillas csv de ejemplo para las siguientes tablas:

1.3.5.1. Recetas de producción

CÓDIGO RECETA	NOMBRE RECETA	PRODUCCIÓN TEÓRICA (u/h)	DESCRIPCIÓN RECETA	
0	sin_receta	0	Sin producción	NO EDITABLE
1	receta_1	35000	Puertas	
2	receta_2	21000	Ventanas	
3	receta_3	6000	Pedales	
4	receta_4	12000	Retrovisores	
5	receta_5	500	Faros	

Como hemos visto en la sección 1.3.1, se trata de la información correspondiente a las recetas, además de una breve descripción si se desea. Al crear un nuevo registro de producción, el dispositivo buscará esta información en las variables recibidas del PLC; en caso de no encontrarla, se comparará el código de la receta (el único campo que es estrictamente necesario) para conseguirla, por lo que es importante que esté en uno de los dos lugares.

IMPORTANTE: El código de receta 0 queda reservado para cuando se tiene la máquina sin trabajar, para que no afecte a los cálculos de eficiencia y disponibilidad.

1.3.5.2. Turnos de trabajo

CÓDIGO TURNO (interno)	NOMBRE TURNO	HORA INICIO	HORA FINAL
1	mañana	6:00:00	13:59:59
2	tarde	14:00:00	21:59:59
3	noche	22:00:00	5:59:59

Esta información sirve únicamente para asignar un turno de trabajo a cada producción y así poder realizar comparativas.

IMPORTANTE: Los turnos deben ser los mostrados en la plantilla de ejemplo, pudiendo únicamente editar el nombre i el horario.

1.3.5.3. Descripciones de las alarmas

TIPO	BYTE	VALOR	DESCRIPCIÓN EN CATALÁN	DESCRIPCIÓI DESCRIPCIÓN EN INGLÉS
BYTE	0	1	Text d'alarma quan byte de la memòria 0 té valor 1	Texto de ala Alarm text when byte from memory 0 has value 1
BYTE	0	2	Text d'alarma quan byte de la memòria 0 té valor 2	Texto de ala Alarm text when byte from memory 0 has value 2
BYTE	0	10	Text d'alarma quan byte de la memòria 0 té valor 10	Texto de ala Alarm text when byte from memory 0 has value 10
BYTE	1	100	Text d'alarma quan byte de la memòria 1 té valor 100	Texto de ala Alarm text when byte from memory 1 has value 100
BYTE	1	101	Text d'alarma quan byte de la memòria 1 té valor 101	Texto de ala Alarm text when byte from memory 1 has value 101
BYTE	1	102	Text d'alarma quan byte de la memòria 1 té valor 102	Texto de ala Alarm text when byte from memory 1 has value 102

La plantilla de esta sección puede variar de un protocolo de comunicación a otro, así como por tipo de variable, pero en todos los casos se deberá indicar el tipo (bool, int o dint), el offset de la variable, el valor de la alarma y la descripción correspondiente.

1.3.5.4. Tareas de mantenimiento

NOMBRE ELEMENTO	VARIABLE	TIPO	TIEMPO/CICLOS DE VIDA	ACTIVO	DESCRIPCIÓN TAREA EN CATALÁN	DESCRIPCIÓN TAREA EN CASTELLANO	DESCRIPCIÓN TAREA EN INGLÉS
Motobomba E123	machine_ON	1	500	1	Ajust de cargols per vibracions	Ajuste de tornillos por vibraciones	Vibration screw adjustment
Cilindro SQ45	work_flank	2	100	1	Neteja del pistò	Limpieza del pistón	Piston cleaning
Motor C123	machine_ON	1	. 800	0	Greixar les peces mòvils	Engrasar las piezas móviles	Grease movable parts
Correa D3	machine_ON	1	1500	0	Neteja de superfície i tensat	Limpieza de la superficie y tensado	Surface cleaning and tensioning

La funcionalidad de mantenimiento depende exclusivamente de esta información para realizar su tarea. Los campos se deben rellenar según el siguiente esquema:

- El campo de VARIABLE debe ser igual al indicado al definir la variable para relacionar el elemento con ésta.

- Los campos de nombre del elemento y las descripciones se mostrarán como literales en la pantalla, por lo que se recomienda que sean claros y descriptivos.

- El TIPO es el indicador del modo de lectura; 1 para leer los flancos, 2 para contar el tiempo que el bit está en true.

- El TIEMPO/CICLOS DE VIDA se refiere al máximo que un elemento soporta antes de requerir mantenimiento. El sistema lanzará una prealarma cuando el tiempo/ciclos contabilizados llegue al 70% del indicado aquí y una alarma cuando llegue al 90%.

- El campo de ACTIVO sirve para activar la escucha de la variable, de manera que se puede dejar parametrizado el proceso y activarlo solo cuando se necesite.

2. Instalación y activación del dispositivo a la red

Para configurar la IP del dispositivo, los datos necesarios del PLC y la información necesaria en la base de datos para el correcto funcionamiento de este, el usuario dispone de un "Wizard" que lo guiará paso a paso a lo que se puede acceder desde cualquier navegador con la URL http://10.10.10.20, si se conecta el puerto lateral de Ethernet a un ordenador con IP estática dentro del rango (como por ejemplo 10.10.10.25).

	Configurar	
IPS		
贷 CONFIGURAR	Establecer idioma: es	
	Establecer fecha y hora: 2023-05-29 08:40:31)
	APLICAR EN EL DISPOSTIVO	

Al acceder al configurador, nos cargará la página para elegir el idioma. En la parte izquierda se pueden ver los menús disponibles. La primera vez, solo estará activo el que permite introducir la nueva IP y Gateway al dispositivo.

"NOBOX	Configuración de IPs
IPS	
ស្ត្រី CONFIGURAR	Dirección IP 192.168.20.204
	Gateway IP 192.168.20.2
	Proxy IP
	Proxy Port
	GUARDAR LIMPIAR
	C PROBAR CONEXIÓN

Para que la configuración sea efectiva, el dispositivo debe reiniciarse mediante el botón de la pantalla. Una vez hecho, ya se puede colocar el dispositivo en su lugar final dentro del panel y conectarlo a la red. El puerto lateral es el puerto de comunicación con el PLC, mientras que el puerto situado en la parte superior del dispositivo es el encargado de darle salida a internet en caso de querer comunicar este con la nube.

Siguiendo con la configuración (a la que volvemos a acceder poniendo la nueva IP configurada), se debe dar de alta la licencia del dispositivo.

Paso 1/2	
Licence file (.enc)	Paso 2/2
SIGUIENTE LIMPIAR	Código de licencia

En este menú, el usuario debe subir el archivo .enc y poner el código de activación facilitado por la plataforma cloud donde previamente se debe realizar el alta del producto. Cómo hacer esta alta queda explicado en el manual correspondiente.

Con esto, el dispositivo está listo para pasar a configurar la información del PLC.

3. Configuración inicial

El siguiente paso será seleccionar el proveedor deseado y configurar los datos, divididos en cuatro bloques:

- **Conexión PLC.** Aquí se definen los datos de acceso del PLC escogido.

- **Variables.** Aquí se definen las variables de producción, las alarmas a controlar, las variables útiles para monitorizar elementos y realizar mantenimientos preventivos y las variables que se quieran utilizar con la funcionalidad datalogger (todas estas funcionalidades se explican en el punto 1.3).

- **Definiciones.** Aquí se puede descargar la plantilla csv específica para rellenar cada una de las tablas. Hay que tener en cuenta las restricciones comentadas anteriormente.

- **Logo.** Donde cargar la imagen png que se quiera que aparezca en los diferentes dashboards.

Al finalizar cada una de las parametrizaciones, el botón de PUBLICAR CONFIGURACIÓN arrancará el sistema configurado.

Ya que la definición de variables es diferente para cada protocolo, pasamos a explicar en detalle cómo introducirlas para los proveedores actualmente disponibles.

пловох	=	
IDE	Seleccionar proveedor	
IPS		
PROVEEDOR		
贷 CONFIGURAR	SIEMENS	Modbus
	SIEMENS	MODBUS

3.1 Siemens para ethernet (S7 o superior)

Para Siemens, hay que definir la dirección IP, el puerto de comunicación, el Rack i el Slot en la pestaña de CONEXIÓN PLC.

CONEXIÓN PLC	VARIABLES	DEFINICIONES	LOGO						
Configuración de conexión PLC									
		IP 192.1	68.20.111						
		Port							
		102							
		Rack O							
		Slot 1							
		SI	GUIENTE	LIMPIAR					

Después de guardar los parámetros del PLC, el siguiente paso será definir las variables.

Para las variables de producción, el usuario dispone de un Bloque de Datos por defecto que se puede cargar en el PLC y enlazar fácilmente con las variables correspondientes del programa. Este DB es el que se visualizará al cargar la pestaña de VARIABLES DE PRODUCCIÓN. En el caso de querer apuntar a la variable exacta sin pasar por este DB, será necesario editar cada una de ellas. Dependiendo del área de memoria en la que se encuentren, las direcciones se deben escribir según la tabla que se encontrará en el siguiente enlace:

https://flows.nodered.org/node/node-red-contrib-s7

Address	Step7 equivalent	JS Data type	Description
DB5,X0.1	DB5.DBX0.1	Boolean	Bit 1 of byte 0 of DB 5
DB23,B1 OF DB23,BYTE1	DB23.DBB1	Number	Byte 1 (0-255) of DB 23
DB100,C2 or DB100,CHAR2	DB100.DBB2	String	Byte 2 of DB 100 as a Char
DB42,I3 or DB42,INT3	DB42.DBW3	Number	Signed 16-bit number at byte 3 of DB 42
DB57,WORD4	DB57.DBW4	Number	Unsigned 16-bit number at byte 4 of DB 57

Al final, el DB deberá tener un aspecto como este:

	GLOBAL VARIABLES MAINTENANCE VARS		DATALOGGER VARS	INT ALARMS DB	DINT ALARMS DB	BOOL ALARMS D	В
DB	byt	te/bit	tipo de dato	• n	iombre asignado	•	≪
DB100,INT0 recipe_code					EDITAR		
DB100,S2.20 recipe_name					EDITAR		REQUERIDO
DB100,X258.0 running					EDITAR		
DB100,X258.1 pause					EDITAR		REQUERIDO
DB100,X258.2 setup					EDITAR		REQUERIDO
DB100,X258.3 starved					EDITAR		REQUERIDO
DB100,X258.4 blocked					EDITAR		REQUERIDO
DB100,X258.5 planned_stop					EDITAR		

Con las variables de producción definidas, pasaremos a introducir las variables para el mantenimiento. En este caso, se deben introducir únicamente variables booleanas una por una y con una limitación de 20. En el caso del datalogger, la introducción será similar, pero sin limitaciones ni de tipo ni de cantidad.

	GLOBAL VARIABLES	MAINTENANCE VARS	INT ALARMS DB	DINT ALARMS DB	BOOL ALARMS DB	
GENE	RAR VARIABLES MANUAI	LMENTE		IMPORTAR CSV PARA GENERAR VARIABLES		
	Generar varial	oles manualment	te	×		
	DB	byte de inicio	byte final	+ 🛛		

Al introducir las variables de alarmas, disponemos del bloque de booleanas, enteras y doble enteras, donde podemos indicar el DB de inicio y la cantidad de variables si son correlativas o introducir un csv con toda la definición. Dado que los archivos deben tener un formato concreto, cada bloque dispone de plantillas específicas con el formato esperado.

3.2 Modbus genérico

Para que el sistema trabaje con modbus, es necesario indicar la IP y el puerto de acceso al PLC y el número de la unidad donde se encuentran todas las variables a definir. A diferencia de la configuración libre que permiten los PLCs Siemens, el protocolo modbus es más restrictivo, motivo por el cual se puede elegir el bit de inicio del bloque de variables, pero todas las variables deben estar dentro del mismo Unit Id, ser correlativas y con las posiciones asignadas que se pueden visualizar en la tabla mostrada en cada una de las pantallas.

	PRODUCTION VARIABLES	MAINTENANCE VARS	DATALOGGER VARS ALAR	NS VARS
	Dirección de memoria inicia O	al		
		GUARDAR Y REGENERAR	TABLA	
DESCARGAR FICHERO CSV				
word	value	category	bit	bit_value
0	recipe_code	production_vars		
1	status	production_vars	0	running
1	status	production_vars	1	pause
1	status	production_vars	2	setup
1	status	production_vars	3	starved
1	status	production_vars	4	blocked
1	status	production_vars	5	planned_stop
1	status	production_vars	6	lifebit
2	theo_prod_H	production_vars		
3	theo_prod_L	production_vars		

Creaci	Creación de variables									
				PRODUCTION VARIABLE	ES MAINTENANCE VARS	DATALOGGER VARS	ALARMS VARS			
Dirección de memoria inicial 0				Dirección de memoria inicial O			Dirección de memoria inicial O			
¿Cuantos bloques de 16 booleanos? 1			¿Cuántas variables? 1			¿Cuántas variables? 1				
	GUARDAR Y REGENERAR TABLA				GUARDAR Y REGENERAR TABLA			GUARDAR Y REGENERAR TABLA		
		DESCARGAR FICHERO CSV			DESCARGAR FICH	ERO CSV		DE	SCARGAR FICHERO CSV	
	word	value	bit		word	value		word	value	
	0	FaultWBool0	0		0	FaultWint0		0	FaultWDInt0_H	
	0	FaultWBool0	1					1	FaultWDInt0_L	
	0	FaultWBool0	2							
	0	FaultWBool0	3							
	0	FaultWBool0	4							
	0	FaultWBool0	5							
	0	FaultWBool0	6							
	0	FaultWBool0	7							

4. Conclusión

Una vez introducidos todos los datos necesarios, las definiciones para la base de datos y el logo deseado, mediante el botón de Aplicar Configuración el dispositivo almacenará toda la información, se reiniciará y arrancará ya listo para empezar a trabajar con los datos directos del PLC. Junto a este manual de configuración, encontrarán el manual explicativo de las diferentes pantallas de explotación de datos y demás funcionalidades que el sistema pone a disposición del usuario.

Manual de configuración y funcionamiento

Página 13 de 14

IMOBOX

INNOVA IT, SL C/ Llauder, 22. 08302 Mataró (España) Tel: +34 902 109 963 comercial@innovait.cat https://innobox.innovait.cat/